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Optical Response in Metals

Bands Diagrams
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Can we understand optical responses more easily in real space?



Polarization Distribution

» Polarization in a solid:

P = eX +qXnuc; X:qu

> Aisume nuclei are fixed, so
GXnuc = 0.

» Much better to work with the
polarization distribution:

p(X) = (W] 3(X - X)| V).

» This is the probability that
the center of charge is exactly
at the position X.

W. Kohn. PRL. 1964; I. Souza, T. Wilkens, R. M. Martin. PRB. 2000.
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Gauge-Invariant Cumulants

Calculating the full distribution p(X) is hard.
Instead, we calculate the gauge-invariant cumulants:

G = (X2) — (X)*

G = (X*) = 3(X%) (X) +2(X)°



Gauge-Invariant Cumulants

Calculating the full distribution p(X) is hard.
Instead, we calculate the gauge-invariant cumulants:

CL = (X) - 2L7r/dk Trlc]
G = (X2) — (X)? = 2L7r/dk Tr e — ]
G = (X3) — 3(X?) (X) +2(X)3 = 2L7r/dkTr e = 301 + 26] |

where the ¢;'s are written in terms of single-particle wavefunctions |ug,) as
— _ 2 2 — 3 3
c1 = i (Ukn|OkUkn) s, 2 = i (Ukn|OfUkn) , €3 = i (Ukn|Of Ukn) -

These are invariant under gauge transformations |uy,) — |uy,) €?7(K).

I. Souza, T. Wilkens, R. M. Martin. PRB. 2000.



» (; is the mean of the polarization
distribution
L ) g |[—
Cl = — Z dk i <uk,,]8kuk,,> . a2 —
2 n€occ .—5 _—
» Berry phase Axn = i (Ukn|Ok Ukn)! a
S
» Berry phase theory of polarization: g
:g:

~ e e
Py=-CG=— k A
< > LCl 27T Z /d kn T T T
» Connection between geometry and
optical response.

J. Zak. PRL. (1989); R.D. King-Smith, D. Vanderbilt. PRB. (1993);
R. Resta. Rev. Mod. Phys. (1994); R. Resta, D. Vanderbilt. Phys. of Ferroelectrics. (2007).



Example: Rice-Mele Model
Rice-Mele is a simple model for ferroelectrics.

HRM = Z(—l)nACICn

n

t 5,0
+ <2 +(-1) 2) clcar1 +hec.

Metallic at A = § = 0. Circling this point in
parameter space pumps charge.
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M. Yahyavi, B. Hetényi. PRA. (2017).



G, is the variance.
Connected to quantum metric.

Connected to electron localization

{=G/L

C, diverges for metals where
electrons are “free”

Delocalized electrons are more
conductive. Sum rule:

e’ ° dw
mCé:/O URGU(W)

Polarization Distribution

I. Souza, T. Wilkens, R. M. Martin. PRB. 2000.



» (3 is the skew.

» Quantifies imbalance between left g|/— Gs=00
and right shoulders of the E — =03
distribution. g
z
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New Sum Rule

» For a two band system with time-reversal symmetry, diagonal responses obey

7re

2712 C3 / dw UShIft(w)

» This is a new nonlinear sum rule

» The shift current is the “solar panel response”: how much DC current is
generated from an applied electric field

—w AN
oshift(w) = Re 0(2)(0;w —w)

Y
» For two band systems, shift is related to SHG:

oshe(w) = Re 0@ (—2w; w, w) = =204t (2w) + Tshife(w)
N. Nagaosa, T. Morimoto. Adv. Mater. (2017).



Large C3

!

Large Shift Current

!

Large Second Harmonic Generation!



Real Space versus Reciprocal Space

Polarization Distribution
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(3 and TaAs
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1. TaAs is quasi-1D.
2. TaAs is ferroelectric.
3. Rice-Mele is the cannonical 1D

ferroelectric.

Therefore Rice-Mele is a good minimal
model for TaAs.
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1. TaAs is quasi-1D.
2. TaAs is ferroelectric.
3. Rice-Mele is the cannonical 1D

ferroelectric.

Therefore Rice-Mele is a good minimal
model for TaAs.

» There is a maximum C3 in Rice-Mele:

3,2 32

“ 2 E(t/A,5/0) < 030252 s

G=7

where E; is the elliptic function of the
second kind.

» The Rice-Mele parameters that
describe TaAs well nearly reach this
maximum.

» TaAs has essentially the largest SHG
response for this class of materials.



Designing Large SHG

Polarization Distribution
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Summary

Geometry Visualization Electric Response
G Mean Polarization
G Variance/Localization Conductivity
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Second Harmonic




